

ECiMa™

ECiMa neutral liner

Vitamin-E enriched advanced polyethylene

Ultra-low wear

ECiMa has excellent wear properties thanks to extensive cross-links created during an optimised, cold

In mobile joint replacement, minimising wear is critical to longevity.

ECiMa elevated posterior wall liner

gamma irradiation process¹. When compared to UHMWPE and HXLPE, a 95% and 83% reduction in wear rate was recorded².

After cross-linking, some free radicals may remain. Removing these reactive free radicals is critical. Corin use a proprietary mechanical annealing process to reduce free radicals created during the

Mechanical performance

irradiation process without re-melting. This means crystallinity is largely unaffected and ECiMa retains the proven mechanical strength and performance of UHMWPE³.

oxidation.

This vitamin-E reduces oxidation initially by neutralising reactive free radicals created during

irradiation, and a remaining antioxidant reservoir provides active stabilisation to minimise in vivo

- References
 - Traynor A, Simpson D, Collins S. ECiMa™ for low wear, optimal mechanical properties and oxidation resistance of hip bearings. Total Hip Arthroplasty Wear Behaviour of Different Articulations, EFORT Reference in Orthopaedics and Traumatology, Springer: ISBN 978-3-642-27360-5, 2012.
 Data on file, Corin Group ltd.

1. Oral E, Godleski Beckos C, Malhi AS, Muratoglu OK. The effects of high dose irradiation on the

crosslinking of vitamin E-blended ultra-high molecular weight polyethylene. Biomaterials,

Data on file, Corin Group ltd.
 Competitor literature review.

2008:29;3557-60.

- 6. Oral E, Wannomae KK, Hawkins NE, Harris WH, Muratoglu OK. a-Tocopherol doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials, 2004;25(24):5515-22.
- Oral E, Christensen S, Malhi A, Wannomae K, Muratoglu O. Wear resistance and mechanical properties of highly crosslinked UHMWPE doped with vitamin E. Journal of Arthroplasty, 2006;21(4):580-91. 5 Oral E, Godleski Beckos C, Malhi AS, Muratoglu OK. The effects of high dose irradiation on the crosslinking of vitamin E-blended ultra-high molecular weight polyethylene. Biomaterials, 2008:29;3557-60.

